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Day #1 wrap-up

• Concept: CQED (polaritons) + cavity optomechanics

• What are these polaritons: tunable superposition of photon 

and X states, low-mass, strong interactions, Bose-Einstein 

condensation, superfluidity.

• The structures and their properties

• Strong X-mediated enhancement of g0

• Tailored polariton and phonon lattices



The OM coupling: RF driving
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The OM coupling: LP Brillouin scattering
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Polaromechanical “Metamaterials”
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370 THz

+ exciton-exciton Coulomb interactions!
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Cavity optomechanics: excitation (2 modes)
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M. Aspelmeyer, TJK, FM, Cavity Optoemchanics, Rev. Mod. Phys. 86, 1391 (2014).

P. Kharel et al., High-frequency cavity optomechanics using bulk acoustic phonons, Sc. Adv. 5, eaav0582 (2019).



Cavity optomechanics: back-action
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Cavity optomechanics: self-oscillation
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Cavity optomechanics: self-oscillation
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Cavity optomechanics: OM cooperativity
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Experimental set-up



Experimental set-up

de ~ 5GHz 0.3GHz g(1)(t) 



Experimental set-up

de ~ 5GHz 0.3GHz g(1)(t) 



Non-resonant excitation

“Reservoir”

CONTINUOUS laser

non resonant



D. Chafatinos et al, NatComm 11, 4552 (2020) 
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The experiment: cw non-resonant excitation

Ground state: GS

Excited state: ES
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Increasing cw excitation power
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D. Chafatinos et al, NatComm 11, 4552 (2020) 
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Mechanical self-oscillation

detuning de=nwm
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And how do we know that it is oscillating?

Doppler pendulum:            1st course on experimental physics
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And how do we know that it is oscillating?

Doppler pendulum:            1st course on experimental physics
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D. Chafatinos et al, NatComm 11, 4552 (2020) 

Mechanical self-oscillation

detuning de=nwm

ES

GS

Detuning between traps

“sideband-resolved regime”

nm



D. Chafatinos et al, NatComm 11, 4552 (2020) 

A phonon laser

detuning de=nwm
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But…. the Devil is in the details… 

Pumped BEC

Scattering to neighbor BEC
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The polaromechanical conundrum



Ground state 

overlap 

integral ~10-4wm

X

The polaromechanical conundrum



Highly extended 

excited state!
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Highly extended 

excited state!
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2nd order inter-trap coupling

g1n
g2n

D

Mechanical SO: 2nd order coupling

Highly extended 

excited state

Strongly localized 

ground state



Trap #1

Trap #2Frequency renormalization

Parametric driving

Mechanical SO: “Parametric” process

D. Chafatinos et al, NatComm 11, 4552 (2020)

A. A. Reynoso et al, PRB 105, 195310 (2022)  

w1 – w2 = 2wm



Trap #1

Trap #2Frequency renormalization

Parametric driving

An OM parametric oscillator

w1 – w2 = 2wmOMPO
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d= 2wm

~ 2 x 19GHz

0

d= wm + wm

~ 19 + 57 GHz

0 1

Parametric instability

Theory



Parametric instability

Phonon occupation

Threshold condition

“Arnold tongue” 



Another consequence of quadratic coupling

gMP if <<

gMP
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Day #2 wrap-up

• Self-oscillation in standard OM systems

• Polariton-induced phonon lasing with non-resonant 

excitation 

• The OMPO: quadratic OM coupling 

• RF boosted OM strong-coupling: the “phonoriton”
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