Cavity Optomechanics with Polariton Fluids

2

Alex Fainstein

Photonics and Optoelectronics Lab Instituto Balseiro, Bariloche, Argentina

Paul-Drude-Institut für Festkörperelektronik

Day #1 wrap-up

Bellin Bartin

Day #1 wrap-up

- Concept: CQED (polaritons) + cavity optomechanics
- What are these polaritons: tunable superposition of photon and X states, low-mass, strong interactions, Bose-Einstein condensation, superfluidity.

State Little

- The structures and their properties
- Strong X-mediated enhancement of g₀
- Tailored polariton and phonon lattices

 $H = \hbar \omega_c c^+ c + \hbar \omega_m b^+ b + \hbar g_0 c^+ c (b + b^+)$

optomechanical coupling

phonon displacement

The OM coupling: RF driving

The OM coupling: RF driving

The OM coupling: Modeling

The OM coupling: LP Brillouin scattering

Polaromechanical "Metamaterials"

+ exciton-exciton Coulomb interactions!

Index

10

- Day #1: cavity polaritons, resonant exciton mediated optomechanical interaction
- Day #2: self-oscillation, the optomechanical parametric oscillator

-40 -20 0 $\omega - \omega_0$ (GHz)

20 40 60 80

Day #3: synchronization, OM

asynchronous locking of polariton states

Bonus: Friday talk, time crystals

Cavity optomechanics: excitation (2 modes)

$H = \hbar \omega_1 a_1^{\dagger} \hat{a}_1 + \hbar \omega_2 a_2^{\dagger} a_2 + \hbar \Omega_m b_m^{\dagger} b_m - \hbar g_0^m (a_2^{\dagger} a_1 b_m + b_m^{\dagger} a_1^{\dagger} a_2)$

M. Aspelmeyer, TJK, FM, Cavity Optoemchanics, Rev. Mod. Phys. **86**, 1391 (2014). P. Kharel *et al.*, High-frequency cavity optomechanics using bulk acoustic phonons, Sc. Adv. **5**, eaav0582 (2019).

Cavity optomechanics: back-action

Cavity optomechanics: self-oscillation

Cavity optomechanics: self-oscillation

Cavity optomechanics: OM cooperativity

The OM coupling: LP Brillouin scattering

Experimental set-up

Experimental set-up

 $\delta \epsilon \sim 5 \text{GHz} \longrightarrow 0.3 \text{GHz}$

Experimental set-up

δε ~ 5GHz → 0.3GHz

g⁽¹⁾(τ)

Non-resonant excitation

The experiment: cw NON-RESONANT excitation

Ultra HR spectrometer

The experiment: cw NON-RESONANT excitation

The experiment: cw non-resonant excitation

The experiment: cw non-resonant excitation

Mechanical self-oscillation

Mechanical self-oscillation

And how do we know that it is oscillating?

Doppler pendulum: 1st course on experimental physics

And how do we know that it is oscillating?

Mechanical self-oscillation

But.... the Devil is in the details...

Mechanical SO: 2nd order coupling

Mechanical SO: "Parametric" process $\ddot{x}_n + \Gamma_n \dot{x}_n + \tilde{\Omega}_n^2 x_n = 0$ Parametric driving $\tilde{\Omega}_n^2 = \Omega_n^2 + 4\Omega_n \frac{g_0^2}{\Delta} \left(2n_3^0 - \sum_{j=1}^2 n_j^0 + 2\sqrt{n_1^0 n_2^0} \cos(\omega_1 - \omega_2)t \right)$ Frequency renormalization Trap #1

$$\omega_1 - \omega_2 = 2\omega_m$$

D. Chafatinos *et al*, NatComm **11**, 4552 (2020) A. A. Reynoso *et al*, PRB **105**, 195310 (2022)

Parametric instability

Parametric instability

Another consequence of quadratic coupling

nature communications

Microcavity phonoritons – a coherent optical-to-microwave interface

Received: 3 November 2022

Accepted: 14 August 2023

Alexander Sergeevich Kuznetsov O¹, Klaus Biermann¹, Andres Alejandro Reynoso^{2,3,4}, Alejandro Fainstein O^{2,3} & Paulo Ventura Santos O¹

Published online: 18 September 2023

$$\hat{H}_{\text{int}} = \hbar G_2 (\hat{a}_u^{\dagger} \hat{a}_l + \hat{a}_l^{\dagger} \hat{a}_u) (\hat{b}^{\dagger} + \hat{b})^2$$

 $\hat{a}_u \to \alpha_u + \delta \hat{a}_u \qquad \hat{a}_l \to \alpha_l \qquad \hat{b} = \alpha_b + \delta \hat{b}$

$$\hat{H}_{m,u} = \hbar \Delta_m \hat{b}^{\dagger} \hat{b} + \hbar \Delta_u \hat{\delta} a_u^{\dagger} \hat{\delta} a_u + \hbar 2G_2 \sqrt{n_b n_l} \left(\hat{\delta} a_u^{\dagger} \hat{\delta} b + \hat{\delta} b^{\dagger} \hat{\delta} a_u \right)$$

$$g_2 = 2\sqrt{N_{\text{MP}} n_b} G_2$$

$$\delta E = \frac{\gamma_{\text{MP}}}{2} + \text{Im} \left[\sqrt{g_2^2 - \frac{\gamma_{\text{MP}}^2}{4}} \right]$$

$$\gamma_{\text{MP}} \text{ if } g_2 < \gamma_{\text{MP}} / 2$$

$$\gamma_{\text{MP}} \text{ if } g_2 \geq \gamma_{\text{MP}} / 2$$

$$\gamma_{\text{MP}} f_2 = \frac{\gamma_{\text{MP}}}{2} \text{ if } g_2 \geq \gamma_{\text{MP}} / 2$$

Day #2 wrap-up

- Self-oscillation in standard OM systems
- Polariton-induced phonon lasing with non-resonant excitation

Free States

- The OMPO: quadratic OM coupling
- RF boosted OM strong-coupling: the "phonoriton"

Index

- Day #1: cavity polaritons, resonant exciton mediated optomechanical interaction
- Day #2: self-oscillation, the optomechanical parametric oscillator

Day #3: synchronization, OM

asynchronous locking of polariton states

Bonus: Friday talk, time crystals